• 重庆时时彩
    金沙讲坛
    您的位置: 重庆时时彩 >> 正文

    【理学院】On Numerators of Bernoulli Numbers

     目 On Numerators of Bernoulli Numbers
     间2019年11月21日(周下午 1430-1530
     点18-918
    报告人Mehmet Cenkci,教授
     要The Bernoulli numbers, which appear in many different areas of mathematics such as nul-merical analysis (e.g. the Euler -Maclaurin Summation Formula), mathematical analysis (e.g.trivial zeros of the Riemann zeta function), combinatorics (e.g. connections with combinatorialnumbers like Stirling numbers), and analytic number theory (e.g. nonvanishing of the DirichletL-function), satisfy some arithmetical properties. Being rational numbers, their denominatorsare completely determined by the von Staudt-Clausen Theorem. However, such a complete

    description of their numerators is not known, although many fundamental results concerningFermat's Last Theorem rest on arithmetical properties of the numerators. We shall talk aboutsome arithmetical properties of numerators of Bernoulli numbers, in particular, about K ummercongruences, Voronoi congruences, and the results due to Frobenious, Ramanujan, and Carlitz.

    报告人概况Mehmet Cenkci先后于2001年和2007年在阿卡德尼兹大学获得硕士和博士学位,现任阿卡德尼兹大学教授主要研究解析数论、特殊和生成函数等方向。


    Copyright ? 重庆时时彩-国家授权正规彩票平台|官网|重庆时时彩 .All Rights Reserved 浙ICP备10006424号 地址:杭州下沙高教园区2号街928号  浙公网安备 33011802000517号
    XML 地图 | Sitemap 地图